

Lower Santa Margarita River IPR Project Project Completion Report

San Diego Integrated Regional Water Management Regional Advisory Committee November 6, 2024

Acknowledgements

- Fallbrook Public Utility District (FPUD)
 - Jack Bebee
 - Aaron Cook
- Marine Corps Base Camp Pendleton (CPEN)
 - Stu Eyler
 - Dan Bartu

allbrook Publ Utility District

- Joel Heywood
- John Simpson
- Rainbow Municipal Water District
 - Tom Kennedy (former GM)
- CA Department of Water Resources

- Hazen and Sawyer
 - Tim Suydam
 - Arthur Moncrief
 - Mario Gonzalez
- Carollo Engineers
 - Andy Salveson
 - Amos Branch
 - Jeff Weishaar
- Stetson Engineers
 - Steve Reich
 - Ann Easterbrook
- Independent Consultants
 - Debbie Burris
 - Michael Welch

1

Discussion Topics

- Project Background
- Grant Process/Schedule
- · Feasibility of IPR Projects
- Treatment Train Selection
 and Pilot Equipment
- Pilot Test Results

allbrook Public Utility District

3

- Conceptual Layout
- Summary and Next Steps

Project Background

Agency Locations

5

allbrook Public Utility District

Fallbrook Public Utility District

- Water and sewer service to 35,000 residents in the City of Fallbrook
- Agriculture uses about 40% of the water
- Fallbrook Water Reclamation Plant (WRP) treats an average of 1.5 mgd
 - 0.5 mgd of recycled water
 - 1 mgd discharged to ocean
- Potential partnership with Rainbow Municipal Water District (RMWD)

United States Marine Corps, Camp Pendleton

- Groundwater supply only
- Recharged by Santa Margarita River (SMR)
- Built SMR Conjunctive Use Project (SMRCUP) with FPUD to increase recharge,
- Excess SMRCUP water delivered to FPUD
- Southern Regional Tertiary Treatment Plant (SRTTP) treats average of 2.7 mgd
- Approximately 1.1 mgd recycled water and 1.6 mgd ocean discharge

FPUD Project Initial Concept

Fallbrook WRP

allbrook Public Utility District

7

- IPR treatment
- Stream discharge to Fallbrook
 Creek
- Lake O'Neill
- Discharge Ditch (Surface Spreading)
- CPEN extraction wells
- FPUD SMRCUP Water Treatment Plant

MARINE CORPS BAS

CPEN Project Initial Concept

• SRTTP

allbrook Public Utility District

9

- Existing pipelines to IPR treatment at Southern AWTP
- New pipeline to spreading basin
- Recharge Pond #3
- CPEN extraction wells
- Southern AWTP or FPUD SMRCUP Water Treatment Plant

Prop 1 Round 1 IRWM Implementation Grant Process

Grant Process/Project Schedule

- Grant Awarded June 27, 2020
 - Decision Support Tool Project
 - \$687,500 with 50% minimum match
 - Completion deadline September 30, 2025
- Feasibility Studies Completed July 14, 2021
- Design Completed January 19, 2022
- Implementation
 - Piloting Conducted from February 28, 2022 to August 8, 2022
- Final Report Completed June 30, 2023

allbrook Public Utility District

Feasibility of IPR Projects

Groundwater Modeling (Stetson, 2023)

2 MONTHS TRAVEL TIME

- **4 MONTHS TRAVEL TIME**

6 MONTHS TRAVEL TIME

12 MONTHS TRAVEL TIME

- Recharge Pond #3
- Wet condition shown
- Modeled response retention time was just over 7 months (217 days) allbrook Public Utility District

FPUD and CPEN IPR Projects Issues Table

Торіс	FPUD	CPEN	Regulatory Agency
Recovery of recharge water	\checkmark	\checkmark	N/A
Recycled water quality	\checkmark	\checkmark	RWQCB and DDW
Meeting TP in stream discharged	\checkmark		RWQCB
Meeting TN in stream discharge	\checkmark		RWQCB
Meeting California Toxics Rule requirements	\checkmark		RWQCB
Wet weather flows from Lake O'Neill reach SMR	\checkmark		RWQCB and DDW
TOC based on RWC and diluent	\checkmark	\checkmark	DDW
Pathogen (12/10/10)	\checkmark	\checkmark	DDW
Response retention time	\checkmark	\checkmark	DDW
Alternative discharge and off-spec water	\checkmark	\checkmark	RWQCB and DDW

Торіс	FPUD	CPEN	Regulatory Agency
Recovery of recharge water	\ ✓ /	\checkmark	N/A
Recycled water quality	\ ✓ /	\checkmark	RWQCB and DDW
Meeting TP in stream discharged	$\backslash \checkmark$		RWQCB
Meeting TN in stream discharge	\checkmark		RWQCB
Meeting California Toxics Rule requirements	¥		RWQCB
Wet weather flows from Lake O'Neill reach SMR	\wedge		RWQCB and DDW
TOC based on RWC and diluent		\checkmark	DDW
Pathogen (12/10/10)		\checkmark	DDW
Response retention time		\checkmark	DDW
Alternative discharge and off-spec water	/ 🗸 \	\checkmark	RWQCB and DDW

FPUD and CPEN IPR Projects Issues Table

Treatment Train Selection and Pilot Equipment

Benefits of Carbon-Based Advanced Treatment Train

Treatment Barrier	Pathogens	Chemicals	Other Benefits	
Ozone	\checkmark	\checkmark	Reduce TOC UF design	
BAC	×	\checkmark		
UF	\checkmark	×		
GAC	×	\checkmark	Reduce TOC	
UV	\checkmark	\checkmark		
Aquifer	\checkmark	\checkmark	Reduce TOC	

allbrook Public Utility District

Pilot Equipment

Ozone Pilot Unit (Intuitech)

BAC and GAC Filter Pilot Unit (Intuitech)

UF Pilot Unit (Suez Zeeweed)

ok Publi District

Pilot Test Plan

Testing Phases

- Phase 1 Startup and troubleshooting (13 weeks)
- Phase 2 Stable operation (8 weeks)

Key Operating Parameters

- O₃/TOC ratio: 1.0
- BAC EBCT: 15 minutes
- UF Flux: 36 gfd

allbrook Public Utility District

19

• GAC EBCT: 21 minutes

SRTTP Pilot Test Results

TOC Reduction Through the Pilot Plant

GAC Breakthrough Summary

Parameter	GAC Influent Concentration	Breakthrough Limit	Approximate Bed Volumes to Reach Limit Based on Pilot Data	
PFOA	7.4 – 12 ng/L	5.1 ng/L ¹ (4.0 ng/L) ²	31,000 (21,000)	
PFOS	8.3 – 14 ng/L	6.5 ng/L ¹ (4.0 ng/L) ²	63,000 (30,000)	
PFHxS	9.8 – 18 ng/L	3.0 ng/L ¹	10,000	
PFBS	14 – 23 ng/L	500 ng/L ¹	Not applicable	
тос	2.8 – 4.2 mg/L	4.9 mg/L ³	Not applicable	
 ¹ Notification Level ² Proposed USEPA MCL <u>3 Estimate</u>d maximum TOC assuming 10.6 MGD of diluent and 40% removal by soil aquifer treatment 				
allbrook Public Utility District				

Conceptual Layout

Layout at SRTTP

- CBAT train
- Design flow: 2.2 mgd

Conveyance to Recharge Ponds

- Approximately 8 miles to recharge ponds
- Elevation gain of 71 ft

allbrook Public Utility District

Summary and Next Steps

Summary and Next Steps

Discussion Topics Summary

- Only CPEN IPR was feasible
- Satisfied water quality goals
- · Source water affects

Jtility Dietrict

27

- PFHxS breakthrough probably would control GAC replacement
- Conceptual design of CPEN IPR facility was developed
- Conceptual piping alignment was proposed

Next Steps

- Discussions between CPEN and FPUD about implementation
- Potential FPUD agreement with Rainbow Municipal Water District
- Secure federal funding to advance to design and construction

Thank You!

